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Abstract. The superconductivity of metals whose symmetry group includes a polar axis is
considered. A modified Ginzburg–Landau free-energy functional is derived, and it is shown that
due to the absence of space parity the free-energy density involves an additional term of the
form − 1

2κ(c × B) · (ψ∗Πψ+ψΠ∗ψ∗) whereψ is the order parameter,Π = −i∇− (2e/c)A,
c is the unit vector along the polar axis,B = ∇ × A, andκ is a real function of the electronic
structure parameters. The consequences of the term on the problem of the critical current in
a thin single-crystalline film are studied, and an anomalous effect of the magnetic field on the
value of the current is predicted: namely, if the film is produced in such a way that its plane is
perpendicular to the vectorc, then the magnitude of the critical currentJc(B) should depend
on the sign of the mixed product(c × B) · Ĵc, i.e., the critical current should be different for
two opposite directions.

1. Introduction

Among the great number of superconducting materials discovered recently, a group of
inorganic metals is somewhat exceptional. These are intermetallic compounds whose
symmetry group includes a polar axis. Examples of the metals in this as yet relatively small
group include some of the ternary silicides [1] (CeCoSi3 and probably LaRhSi3 and LaIrSi3)
with space groupI4mm. The group, however, should extend as new superconductors of
complex composition are synthesized and investigated. Indeed, if the elementary cell of a
compound contains many different ions, there is no reason for their arrangement to always
be centrosymmetrical.

Central symmetry of a metal may also be violated as a result of a structural phase
transition as was suggested for the first time in a paper by Anderson and Blount [2], on work
in connection with phase transformations in A15- (β-tungsten-) structure superconductors.
It was argued in [2] that if the structural transition, which takes place at temperatureTM

somewhat above the superconducting transitionTc, is of second order, then it should be
accompanied by an internal symmetry change, such as the loss of the inversion centre
or even development of a polar axis, in addition to the change in lattice size and shape.
This prediction proved to be correct—‘ferroelectric’ metals (e.g. V2Hf with space group
Imm2 [3]) were subsequently discovered. Furthermore, polar superconductors might be
manufactured by means of the MBE technique.

The consequences of the absence of central symmetry for the superconducting properties
were not discussed in [2]. It is clear, however, that the presence of a polar axis can have
an effect on the Cooper pairing. One consequence follows directly from pure symmetry
considerations. It is the appearance of the invariantq · (c × B) (allowed by the polar
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340 V M Edelstein

symmetry) in the dynamical characteristics of a Bose-type excitation inherent in a given
polar compound. Hereq is the wave vector of the excitation, the unit vectorc points to the
polar axis, andB is an external magnetic field. The invariant was first met in semiconductor
optics [4, 5], when a correction to the energy of an exciton, even in the exciton momentum
and the magnetic field, was detected in CdS crystals. Later on, the invariant appeared in
the problem of the conduction electron spin resonance in doped polar semiconductors. It
was shown that the spin-density fluctuation of the wave vectorq decays with a rate which
depends on the fieldB andq through the invariant [6, 7]. A relevance of the invariant to
the Cooper instability in strict two-dimensional systems (forming the superfluid condensate
with a non-zero phase) was mentioned in [8]. On the grounds of all that has been said, one
can expect the invariant to play an appreciable role in superconducting problems with the
spatially varying order parameter in the Ginzburg–Landau (GL) region as well.

The purpose of this paper is to develop a modification of the GL theory suitable for
three-dimensional polar metals and, with the help of the theory, to investigate the influence
of an external magnetic field on the critical current of a thin film. The polar symmetry
enters into the problem under discussion through the spin–orbit (SO) term in the one-particle
Hamiltonian

Hso = α

h̄
(p × c) · σ (1.1)

where p is the electron momentum,σ is the Pauli spin matrix-vector, andα is the SO
constant. The SO term was discussed for the first time in connection with the energy
spectrum of bulk [9] and surface [10] electronic states in certain semiconductors. The
origin of the term becomes clear if one writes down an equation expressing the term as a
third-order perturbation theory term of the form [6]

α

h̄
(p × c) · σ =

∑
n

〈
c| h̄

m
p · ∇

i
|n〉 (n|ζ l · σ|n)

(En − Ec)2
(n|eEc · r|c) (1.2)

where|c) refers to the conduction band, the sum is over the other appropriate bands,ζ is
the SO coupling in thenth band, andE is the magnitude of the average odd intracrystalline
electric field. The field does not vanish due to the polar symmetry of the lattice and cannot
be completely screened out by free electrons. Although equation (1.2) was derived in [6] for
semiconductors, i.e. under the assumption that the volume of momentum space enclosed by
the Fermi surface is much less than that of the Brillouin zone and the parameterpa/h̄ (a is
the crystal lattice constant) ofk ·p perturbation theory [11] is small, one may believe that it
is also applicable to metals, wherepF a/h̄ ' 1, at least as an order-of-magnitude estimate.
An important point of (1.2) is that the contribution of thenth band (to the constantα of the
conduction band) is proportional not only to the magnitude of the SO energyζ of the atoms
that thenth band is built from, but also to the inverse square of the energy gapEc − En.
If the gap is small on the atomic scale (Ryd= 27 eV), then this factor can compensate the
smallest ofζ and strongly enhanceα.

Our main result reads as follows. In the presence ofHso, the GL free energy

�(ψ, ψ∗) =
∫

d3r

[
1

η

(
T − Tc

Tc

|ψ|2 + 1

2n
|ψ|4

)
+ 1

4m
(Π∗ψ∗) · (Πψ)

− 1

2
κ(c × B) · (ψ∗Πψ + ψΠ∗ψ∗)

]
(1.3)
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has, as well as conventional terms, an anomalousP -odd term. HereΠ = −i∇ − (2e/c)A,
A is the vector potential,B = ∇ × A, m is the electron mass,η = 7ζ(3)mv2

F /12(πTc)
2,

ζ(n) is the Riemannζ function, vF is the Fermi velocity,n = p3
F /3π2 is the electron

density, and the constantκ incorporates the SO constantα and the Bohr magnetonµB in
the form

κ = 3
α

vF

f3

(
αpF

πTc

)
µB

pF

(1.4)

where

f3(x) = 4

7ζ(3)

∫ π

0
dt sint

∑
n≥0

(x sint)2

(2n + 1)3[(2n + 1)2 + (x sint)2]
. (1.5)

In equation (1.3) and below, the Boltzmann constantkB and Planck’s constant ¯h are set to
unity. It is not difficult to discern the invariant(c×B) ·q in the last term of equation (1.3).
Several remarks are in order. (i) The SO constantα enters the problem in two ways. The
parameterδ = αpF /εF is certainly very small. Another parameterαpF /πTc is much greater
thanδ and can be of the order of unity in real substances. Here we takeαpF /πTc ' 1 and
consequentlyf3 ' 1. (ii) Equation (1.3) suggests s-type pairing. Strictly speaking, in the
presence ofHso, the order parameter contains a small fraction of a triplet state [8]. The
account of this fraction does not bring about qualitative changes in the conclusions obtained.
Therefore, to avoid unnecessary complexities obscuring the main idea, the triplet part of
the order parameter will be neglected. (iii) It should be noticed that if, due to electronic
correlations, the paramagnetic susceptibility of the normal stateχn is strongly enhanced as
compared with that of free electrons, then the same strengthening factor should be added
in equation (1.4) for the constantκ.

The additional term in the GL free energy should obviously reveal itself inP -odd effects
in a current-carrying sample. We shall show that the magnitude of the critical currentJc,
in a film of thickness less than both the penetration depth and the coherence lengthξ(T )

and subjected to a weak parallel magnetic fieldB, has the form

Jc(B) = Jc(0)

[
1 + (c × B) · Ĵf3 δ

3(7ζ(3))1/2

8Hc2pF ξ(T )

]
(1.6)

whereĴ is the unit vector along the supercurrent,Hc2 = c/(2eξ2(T )), ξ(T ) = ξ0(Tc/(Tc −
T ))1/2, and ξ0 = vF /2πTc. One can assume that equation (1.6) is approximately valid
at B ∼ Hc2 and T − Tc ∼ Tc as well. In this region, the main small parameter is
δ(pF ξ0)

−1 = δ(πTc/εF ). Neither the value ofα nor the precise electronic band structure
is known for polar superconductors at present. Some crude estimates and an analogy with
pyroelectric CdS, where equation (1.2) was established to work very well [6], allow one to
expect the relative magnitude of the effect to be of the order of 10−4–10−3 under favourable
conditions (i.e. small Fermi energy, large paramagnetic susceptibility, and large atomic
numbers of the elements composing the metal). One way of detecting the effect is to study
the influence of the magnetic field reversal on the state of the film. If, with the negative sign
of α(c×B) · Ĵ , the supercurrent has a nearly critical magnitude (so the difference between
the real value of the current and the critical one is within the very small region mentioned
above), then the magnetic field reversal should drive the film into the normal state. The
results we have given are for clean metals, whenTcτ � 1 (τ is the mean collision time).
An account of impurities presents no difficulty.
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The organization of the rest of the paper is as follows. In section 2, a detailed description
of the model and the Feynman rules is given. An evaluation of the anomalousP -odd term
in the GL free energy is performed in section 3. In section 4, the problem of the critical
current in the film is considered. The conclusions are presented in section 5. The appendix
demonstrates a technique for working with Feynman’s graphs.

2. The model and formulation

For simplicity, we shall assume that the spectrum of the electrons in the absence ofHso and
the interparticle interaction is isotropic:ε0(p) = p2/2m. Then the one-particle Hamiltonian
of the polar metal under consideration takes the form

H(00)(p) = p2

2m
+ α(p × c) · σ. (2.1)

It follows from (2.1) that the thermal Green function of noninteracting electrons with no
external fields is

G(00)αβ(iε, p) = 5
(+)
αβ (p)G0

(+)(iε, p) + 5
(−)
αβ (p)G0

(−)(iε, p) (2.2)

G0
(±)(iε, p) = [iε − ξ(±)(p)]−1 ξ(±)(p) = ε(±)(p) − µ (2.3)

where

ε(±)(p) = ε0(p) ± αp sinφ (2.4)

and

5
(±)
αβ (p) = 1

2
[δαβ ± (p̂ × c) · σαβ ]. (2.5)

Here φ is the angle between the momentump and the polar axis, and the operator5̂(±)

is the projector onto a state with a definite helicity (the projection of a spin on thep × c
direction). It is seen from (2.4) that the states of positive and negative helicity acquire
different energies. This Green function is the basic tool for subsequent work. The only
difference between the diagram techique obtained and the standard one [12] is in the spinor
structure of the Green function and the changed form of the velocity operator:

v(p) = i [H00(p), r] = p

m
+ α(c × σ) (2.6)

which, besides the usual scalar part, also has a spin component.
As was mentioned in the introduction, we suggest that s-type pairing takes place, i.e.

Hint = λs

2

∫
d3r [ψ+

β (r)gβκψ+
κ (r)][ψδ(r)gδγ ψγ (r)] (2.7)

whereĝ = iσ2, λs is the pairing constant, andψγ (r) is the electron quantized field operator.
The Gor’kov equations [13] for the matrix Green function in momentum space

Ĝαβ(p, p − q, iε) =
(

Gαβ(p, p − q, iε) Fαβ(p, p − q, iε)
F+

αβ(p, p − q, −iε) −GT
αβ(−p, −p + q, −iε)

)
(2.8)
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have the standard form∫
d3q1

(2π)3
L̂αγ (p, p − q1)Ĝγβ(p − q1, p − q) = (2π)3 δ(q) δαβ 1̂ (2.9)

where

L̂αγ (p, p − q) = (2π)3δ(q)

(
iεδαγ − H(00)

αγ (p) 0
0 iεδαγ + H T(00)

αγ (−p)

)

−
(

H
ef
αγ (p, q) + H(Z)

αγ (q) 1αγ (q)

1+
αγ (q) −H

T(ef )
αγ (−p, q) − H T(Z)

αγ (q)

)
(2.10)

Hef
αγ (p, q) = −e

c
vαγ (p) · A(q) HZ

αγ (q) = µBσαγ · B(q) (2.11)

1αβ(q) = −λsgαβT
∑

ε

∫
d3q1

(2π)3
Tr[F(p, p − q) · gT] (2.12)

and the superscript T denotes transposition. As usual [14], to obtain the GL equation, one
ought to iterate equation (2.9) up to the third order in1̂ and then substitute the result
into the self-consistency equation (2.12). The equation for1̂ obtained in this way can be
conveniently represented in the form of the following stationarity condition:

δ�

δ1̂βα(q)
= 0 (2.13)

for the functional

� = 1

4λs

∫
d3q

(2π)3
Tr[1̂+(q)1̂(q)] + 1

2
8 (2.14)

where8 is a functional of1̂ defined diagrammatically in figure 1. All that remains is to
expand the diagrams of figure 1 into a series in the order parameter gradient and the small
external fieldsA andB.

Figure 1. Diagrams which contribute to8. The double line with two arrows represents the
full Green function of the normal metal which incorporates the external field. The single line
represents the bare Green function of equation (2.2). Since, according to the general spirit of
the GL expansion, one can neglect the influence of the external field on the the free-energy term
proportional to14, the second graph may be composed of single lines.
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3. Expansion of the functionalΦ

We now proceed to evaluate the diagrams of figure 1 using some methods from [15]. With
no external field and at the zeroth order of the order parameter gradient, the diagrams,
together with the first term in equation (2.14), yield the conventional result [12]

D(0)

∫
d3r

[(
T − Tc

Tc

)
|1(r)|2 + 7ζ(3)

16π2T 2
c

|1(r)|4
]

(3.1)

whereD(0) = mpF /2π2. By deriving (3.1), we used the fact that at the s-type pairing

1αβ(r) = gαβ1(r). (3.2)

Corrections to equation (3.1) due toHso are negligible, being proportional toδ2. According
to equation (2.10), the vector potentialA and the magnetic fieldB enter the problem via
the energyHef and the Zeeman energyHZ respectively (see (2.11)). One more perturbation
energy is the Doppler energy

HD(p, q) = 1

2
q · v(p) (3.3)

acquired by the electron of momentump by interaction with the external field (or with the
order parameter) bearing momentumq. Since all the Bose-type fields (A, B, and 1̂) are
assumed to be slowly varying over space the momenta with which they enter the diagram
are much smaller than bothpF and ξ−1

0 . Therefore, all three energies can be considered
as small perturbations. Note that the Doppler energy is the cause of the appearance of the
order parameter derivatives which occur in the expansion in two forms:

|∇1(r)|2 (3.4)

and

J0(r) = 1(r)
∇
2i

1∗(r) − 1∗(r)
∇
2i

1(r). (3.5)

The diagrammatic representation of an expansion of the Green functions in powers ofHef ,
HZ, andHD is shown in figure 2.

Figure 2. The diagrammatical representation of the perturbation expansion of the full Green
function in powers of the electromagnetic, Zeeman and Doppler energies. The wavy line
represents aHef vertex (see equation (2.11)), dash-dot-dash represents aHZ vertex (see
equation (2.11)), double dash-dot-dash represents aHD vertex (see equation (3.3)).
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Figure 3. The Feynman graph representation of the expansion of the first diagram of figure 1.
The diagrams (a), (b), and (c) contribute to the conventional part of the free energy. The
diagrams (d) and (e) are responsible for the anomalousP -odd part of the free energy.

As usual, only the first diagram of figure 1 should be expanded into a series in powers of
the vector potential, the magnetic field, and the order parameter derivatives. The expansion
is depicted in figure 3. All the diagrams of figure 3 fall into two classes: the conventional
P -even diagrams ((a), (b), and (c)) and the anomalousP -odd ones ((d) and(e)). One can
easily see that evaluation of the conventional graphs does not requireHso. Therefore, the
Green functions (2.2) take the standard formδαβ [iε − ξ0(p)]−1, and we get the well known
result [10]
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2D(0)

∫
d3r

η

4m

[
Π1(r) · Π∗1∗(r)

]
(3.6)

whereη andΠ are defined after equation (1.3). The evaluation of the anomalous graphs
requires a more accurate approach using the exact Green functions of equation (2.2). The
way in which the calculation was carrued out is explained in the appendix. As a result, one
gets

− D(0)η

∫
d3r

3α

vF

f3

(
αpF

πTc

)
µB

pF

(c × B(r)) ·
(

J0(r) − 2e

c
A(r)|1(r)|2

)
. (3.7)

By combining equations (3.1), (3.5), and (3.7) and using the functionψ(r) defined as

ψ(r) = 1(r)

(
7ζ(3)

8(πTc)2
n

)1/2

(3.8)

we obtain equation (1.3). (Note that in the present paper we call both functions,ψ(r) and
1(r), the order parameter.)

4. The critical current

We now consider the suppression of the superconducting state that occurs at large currents.
By varying the free-energy functional (1.3) with respect toψ∗ and the vector potential, one
gets the GL equations

1

4m

(
−i∇ − 2e

c
A

)2

ψ(r) − κ(c × B) ·
(

−i∇ − 2e

c
A

)
ψ(r)

+ 1

η

[
T − Tc

Tc

+ 1

n
|ψ|2

]
ψ(r) = 0 (4.1)

Js = e

m

(
P0 − 2e

c
A|ψ|2

)
− κc

{
curl

[
c ×

(
P0 − 2e

c
A|ψ|2

)]
+ 2e

c
|ψ|2(c × B)

}
(4.2)

wherec is the velocity of light and

P0(r) = ψ∗(r)
∇
2i

ψ(r) − ψ(r)
∇
2i

ψ∗(r). (4.3)

It should be noted that expression (4.2) may also be obtained as a linear response of the
current operator

ĵ = ĵkin + ĵdia + ĵpar (4.4)

ĵkin = e

m

(
ψ∗

β

∇
2i

ψβ − ψβ

∇
2i

ψ∗
β

)
+ e

m
αψ∗

β(c × σ)βγ ψγ (4.5)

ĵdia = − e2

mc
Aψ∗

βψβ ĵpar = −µBc curl(ψ∗
βσβγ ψγ ) (4.6)

on the interaction with the electromagnetic field

V = −1

c

∫
d3r (ĵkin + ĵdia) · A + µB

∫
d3r (ψ∗

βσβγ ψγ ) · B (4.7)
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in a way analogous to that of [14].
Suppose that one has a long thin film of thicknessd, smaller than both the correlation

lengthξ(T ) and the penetration depthλ, fabricated in such a way that the polar vectorc is
perpendicular to its plane. The self-field of the current is assumed to be small with respect
to the external fieldB, applied parallel to the film. Under these conditions, neglecting
corrections of the order ofBd/Hc2ξ , one may consider|ψ| to be spatially uniform. Hence,
the current flows uniformly through the entire cross section of the film. Let us choose a
coordinate system(x̂, ŷ, ẑ) such thatx̂ is parallel toB, andŷ to J . We look for a solution
of equation (4.1) in the formψ = |ψ| exp iqy. In the gaugeA = (0, −Bz, 0) expression
(4.2) for the supercurrent acquires the form

Js = ŷ
e

m
|ψ|2

(
q + 2e

c
Bz

)
(4.8)

where the second term in parentheses can also be neglected to the accuracy mentioned
above. Then equation (4.1) takes the form of an algebraic equation:

q2

4m
− κ(c × B) · Ĵq + 1

η

[ |ψ|2
n

−
(

Tc − T

Tc

)]
= 0. (4.9)

There will be some maximum value ofq, and hence ofJs , beyond which one can no longer
find a nonzero optimum value of|ψ| to minimize the free energy. This definesJc. Due to
the assumption of homogeneous current flow, the sample will turn abruptly normal when
Js exceedsJc (by neglecting fluctuations and other subtleties that are not considered here).
The simultaneous solution of equations (4.9) and (4.10) presents no difficulties (see [15]).
As a result one gets equation (1.6).

5. Summary

In this paper a derivation of the superconducting state properties of the polar metals
has been given. To a certain extent, such compounds can be viewed as unconventional
superconductors. Due to the lack of inversion centres in the crystal symmetry group,
time-reversal symmetry does not ensure the spin degeneracy of the electronic states. The
superconductivity in systems with lifted spin degeneracy is still poorly investigated and can
be expected to possess unexpected features. Indeed, our study revealed an extra term in
the free-energy functional. This term was shown to result in an anomalous magnetic field
dependence of the critical current. Still more new interesting effects can be apparently
brought out in the nonequilibrium properties of the polar superconductors. So, polar metal
superconductivity certainly merits further examination.
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Appendix

The subject of this appendix is the method of evaluating the anomalous diagrams
encountered in the main text. The calculations can be carried out in a way like that of the
Feynman graph calculation in spinor electrodynamics. We shall perform the calculations
for one of the diagrams depicted in figure 3(d), because the evaluation of other diagrams is
completely analogous.

The contributions of the diagrams are equal and are given by the following expression:

T
∑

ε

∫
d3q

(2π)3

d3q ′

(2π)3

d3p

(2π)3
Tr

{
Ĝ(00)(iε, p)ĤZ(−q)Ĝ(00)(iε, p)

× 1̂(q′ + 1
2q)ĜT(00)(−iε, −p)ĤD(−p, q′)ĜT(00)(−iε, −p)1̂+(q′

− 1
2q)

}
. (A.1)

Substituting the Green function (2.2), the Zeeman energy (2.11) and the Doppler energy
(3.3) into (A.1) and using the identity

− gσTgT = σ (A.2)

gives

T
∑

ε

∫
d3q

(2π)3

d3q ′

(2π)3

d3p

(2π)3

∑
µ,ν=+,−

1
2µBG0

(µ)(iε, p)G0
(µ)(−iε, p)G0

(ν)(iε, p)G0
(ν)(−iε, p)

× 1∗(q′ − 1
2q)1(q′ + 1

2q)Tr
[
5̂(µ)(p)(B(−q) · σ)5̂(ν)(p)(v(p) · q′)

]
.(A.3)

It is not difficult to verify that for any well behaved functionF(|p|, |p × c|), the following
relation is valid:∫

d3p F(|p|, |p × c|) Tr
[
5̂(µ)(p)(B(−q) · σ)5̂(ν)(p)(v(p) · q′)

]
= 1

2B(−q) · (q′ × c)

∫
d3p F(|p|, |p × c|)Q(µν)(|p|, |p × c|) (A.4)

where

Q(µν) =
(

(p/m) sinφ + α α

α −(p/m) sinφ + α

)
µν

. (A.5)

Therefore, (A.3) can be rewritten in the form

T
∑

ε

∫
d3q

(2π)3
1
4µBB(−q) · (J0(q) × c)

∑
µ,ν=+,−

∫
d3p

(2π)3

Q(µν)

[(iε)2 − (ξ(µ))2][(iε)2 − (ξ(µ))2]
.

(A.6)

Let us consider now the integral overξ (ξ = p2/2m − µ) at the fixed angleφ:

I =
∫

dξ

2π

(mp

π

) ∑
µ,ν=+,−

Q(µν)

[(iε)2 − ξ2
(µ)(φ)][(iε)2 − ξ2

(µ)(φ)]
(A.7)
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whereξ(±)(φ) = ξ ± αp(ξ) sinφ. The diagonal elements of̂Q contribute(mpF

π

)
2α(1 − 3 sin2 φ)

1

4|ε|3 (A.8)

to I whereas the nondiagonal elements give

(mpF

π

) 2α

4|ε|3
[

1 − (αpF /πTc)
2 sin2 φ

(|ε|/πTc)2 + (αpF /πTc)2 sin2 φ

]
. (A.9)

Then, equation (A.3) takes the form

−
(mpF

π

) 1

4π3T 2
c

αµB

∫
d3r B(r) · (J0(r) × c)

∫ π

0

1

2
sinφ

∑
n≥0

× x2 sin2 φ

(2n + 1)3[(2n + 1)2 + x2 sin2 φ]
(A.10)

with x = αpF /πTc, or, what amounts to the same,

− D(0)η
3α

4vF pF

f3

(
αpF

πTc

)
µB

∫
d3r (c × B(r)) · J0(r). (A.11)

Hereη is as defined below equation (1.3),D(0) as below (3.1), andf3(x) as is defined by
equation (1.5).
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